Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(7): 1515-1532.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437538

RESUMO

The nervous system is critical for intestinal homeostasis and function, but questions remain regarding its impact on gut immune defense. By screening the major neurotransmitters of C. elegans, we found that γ-aminobutyric acid (GABA) deficiency enhanced susceptibility to pathogenic Pseudomonas aeruginosa PA14 infection. GABAergic signaling between enteric neurons and intestinal smooth muscle promoted gut defense in a PMK-1/p38-dependent, but IIS/DAF-16- and DBL-1/TGF-ß-independent, pathway. Transcriptomic profiling revealed that the neuropeptide, FLP-6, acted downstream of enteric GABAergic signaling. Further data determined that FLP-6 was expressed and secreted by intestinal smooth muscle cells and functioned as a paracrine molecule on the intestinal epithelium. FLP-6 suppressed the transcription factors ZIP-10 and KLF-1 that worked in parallel and converged to the PMK-1/p38 pathway in the intestinal epithelia for innate immunity and gut defense. Collectively, these findings uncover an enteric neuron-muscle-epithelium axis that may be evolutionarily conserved in higher organisms.


Assuntos
Caenorhabditis elegans , Neurônios , Animais , Músculo Liso , Transdução de Sinais , Imunidade Inata
2.
Biomater Sci ; 11(16): 5517-5532, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37387616

RESUMO

Islet transplantation improves diabetes patients' long-term blood glucose control, but its success and utility are limited by cadaver availability, quality, and considerable islet loss after transplantation due to ischemia and inadequate angiogenesis. This study used adipose, pancreatic, and liver tissue decellularized extracellular matrix (dECM) hydrogels in an effort to recapitulate the islet sites inside the pancreas in vitro, and successfully generated viable and functional heterocellular islet micro-tissues using islet cells, human umbilical vein endothelial cells, and adipose-derived mesenchymal stem cells. The three-dimensional (3D) islet micro-tissues maintained prolonged viability and normal secretory function, and showed high drug sensitivity in drug testing. Meanwhile, the 3D islet micro-tissues significantly enhanced survival and graft function in a mouse model of diabetes. These supportive 3D physiomimetic dECM hydrogels can be used not only for islet micro-tissue culture in vitro, but also have great promise for islet transplantation for the treatment of diabetes.


Assuntos
Matriz Extracelular Descelularizada , Diabetes Mellitus , Camundongos , Humanos , Animais , Suínos , Matriz Extracelular , Hidrogéis , Células Endoteliais da Veia Umbilical Humana
3.
ACS Chem Neurosci ; 13(23): 3427-3437, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36441912

RESUMO

Innate immunity is an ancient and evolutionarily conserved system that constitutes the first line of host defense against invading microbes. We previously determined that the GABAergic neuromuscular junction (NMJ) suppresses intestinal innate immunity via muscular insulin signaling. Here, we found that a muscular mitochondrial oxidative phosphorylation pathway of Caenorhabditis elegans is involved in GABAergic NMJs-mediated intestinal defense. Deficiency in GABAergic neurotransmission increases reactive oxygen species (ROS) abundance and inhibits the nuclear translocation of SKN-1, whereas exogenous GABA administration represses it. SKN-1 is an important transcription factor involved in oxidative stress and the innate immune response. Moreover, deficiency in GABAergic postsynaptic UNC-49/GABAAR robustly promotes the mitochondrial function of GABAergic postsynaptic muscle cells, which may contribute to the muscular ROS decrease and intestinal SKN-1 suppression, ultimately inhibiting the intestinal defense of C. elegans. Our findings reveal a potential role of muscle mitochondrial ROS in intestinal defense in vivo and expand our understanding of mechanisms of intestinal innate immunity.


Assuntos
Caenorhabditis elegans , Junção Neuromuscular , Animais
4.
Neurosci Lett ; 747: 135662, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33484738

RESUMO

Stroke is one of the leading causes of death in adults worldwide. However, the mechanism causing neuronal death remains poorly understood. Our previous report showed that enolase1 (ENO1), a key glycolytic enzyme, alleviates cerebral ischemia-induced neuronal injury. It remained unclear whether enolase2 (ENO2) affects neuronal injury in stroke models. Here, we examined the effects of ENO2 in several stroke models. The results showed that the expression level of ENO2 was downregulated after 3 h of cerebral ischemia by middle cerebral artery occlusion (MCAO) in the mouse model. ENO2 was expressed in mouse brain and cultured hippocampus neurons. Overexpression of ENO2 in cultured hippocampus neurons did not affect neuronal injury in our oxygen-glucose deprivation (OGD) model. Interestingly, double knock-down (KD) of ENO1 and ENO2 increased neuronal injury while either KD of ENO1 or ENO2 failed to increase neuronal injury in OGD. Deletion of ENO1 did not affect anoxia-starvation (AS)-induced worm death in C. elegans. These findings demonstrated that ENO2 and ENO1 work together against neuronal injury in these stroke models.


Assuntos
Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Fosfopiruvato Hidratase/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-29263074

RESUMO

The peroxide bond of the artemisinins inspired the development of a class of fully synthetic 1,2,4-trioxolane-based antimalarials, collectively known as the ozonides. Similar to the artemisinins, heme-mediated degradation of the ozonides generates highly reactive radical species that are thought to mediate parasite killing by damaging critical parasite biomolecules. We examined the relationship between parasite dependent degradation and antimalarial activity for two ozonides, OZ277 (arterolane) and OZ439 (artefenomel), using a combination of in vitro drug stability and pulsed-exposure activity assays. Our results showed that drug degradation is parasite stage dependent and positively correlates with parasite load. Increasing trophozoite-stage parasitemia leads to substantially higher rates of degradation for both OZ277 and OZ439, and this is associated with a reduction in in vitro antimalarial activity. Under conditions of very high parasitemia (∼90%), OZ277 and OZ439 were rapidly degraded and completely devoid of activity in trophozoite-stage parasite cultures exposed to a 3-h drug pulse. This study highlights the impact of increasing parasite load on ozonide stability and in vitro antimalarial activity and should be considered when investigating the antimalarial mode of action of the ozonide antimalarials under conditions of high parasitemia.


Assuntos
Antimaláricos/farmacologia , Compostos Heterocíclicos/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Antimaláricos/química , Eritrócitos/parasitologia , Compostos Heterocíclicos com 1 Anel/farmacologia , Humanos , Peróxidos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Compostos de Espiro/farmacologia , Trofozoítos/química
6.
Proc Natl Acad Sci U S A ; 108(11): 4400-5, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21300861

RESUMO

Ozonide OZ439 is a synthetic peroxide antimalarial drug candidate designed to provide a single-dose oral cure in humans. OZ439 has successfully completed Phase I clinical trials, where it was shown to be safe at doses up to 1,600 mg and is currently undergoing Phase IIa trials in malaria patients. Herein, we describe the discovery of OZ439 and the exceptional antimalarial and pharmacokinetic properties that led to its selection as a clinical drug development candidate. In vitro, OZ439 is fast-acting against all asexual erythrocytic Plasmodium falciparum stages with IC(50) values comparable to those for the clinically used artemisinin derivatives. Unlike all other synthetic peroxides and semisynthetic artemisinin derivatives, OZ439 completely cures Plasmodium berghei-infected mice with a single oral dose of 20 mg/kg and exhibits prophylactic activity superior to that of the benchmark chemoprophylactic agent, mefloquine. Compared with other peroxide-containing antimalarial agents, such as the artemisinin derivatives and the first-generation ozonide OZ277, OZ439 exhibits a substantial increase in the pharmacokinetic half-life and blood concentration versus time profile in three preclinical species. The outstanding efficacy and prolonged blood concentrations of OZ439 are the result of a design strategy that stabilizes the intrinsically unstable pharmacophoric peroxide bond, thereby reducing clearance yet maintaining the necessary Fe(II)-reactivity to elicit parasite death.


Assuntos
Adamantano/análogos & derivados , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/uso terapêutico , Malária/tratamento farmacológico , Peróxidos/administração & dosagem , Peróxidos/uso terapêutico , Adamantano/administração & dosagem , Adamantano/química , Adamantano/farmacocinética , Adamantano/uso terapêutico , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Artemisininas/química , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacocinética , Ferro/metabolismo , Malária/parasitologia , Masculino , Camundongos , Peróxidos/química , Peróxidos/farmacocinética , Plasmodium berghei/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...